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Abstract 

The conventional formulation of additional nonisospectral symmetries for the full Kadomtsev-Petviashvili (KP) integrable 
hierarchy is not compatible with the reduction to the important class of constrained KP (cKP) integrable models. This 
paper solves explicitly the problem of compatibility of the Virasoro part of additional symmetries with the underlying 
constraints of cKP hierarchies. Our construction involves an appropriate modification of the standard additional-symmetry 
flows by adding a set of “ghost symmetry” flows. We also discuss the special case of cKP - truncated KP hierarchies, 
obtained as Darboux-BSicklund orbits of initial purely differential Lax operators. Our construction establishes the condition 
for commutativity of the additional-symmetry flows with the discrete Darboux-Bticklund transformations of cKP hierarchies 
leading to a new derivation of the string-equation constraint in matrix models. @ 1997 Published by Elsevier Science B.V. 

1. Introduction 

Relations between integrable models and conformal symmetries have been studied intensely since the first 

early signs of their interconnection showed up in the literature in seventies [ 11. More recently, the KdV 
hierarchy formulation of nonperturbative 2-d quantum gravity [ 21 in the framework of (multi-)matrix models 
prompted more studies in this field. The subsequent work pointed out the nonisospectral symmetry origin of 

the pertinent Virasoro constraints on the string partition function but remained mostly limited to the KdV-like 
reduction of the KP hierarchy since it was dealing with the double scaling limit of the matrix models [ 3 J. 

Quite recently a new class of integrable systems appeared both in mathematical literature [4] and inde- 
pendently in physics literature [.5], where the motivation came from Toda field theory and discrete matrix 
models. These systems belong to the class of the so-called constrained KP hierarchies (cKP) as they are 
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obtained by a symmetry reduction (which generalizes the KdV type of reduction) from the underlying genera1 
(unconstrained) KP hierarchy. The cKF’ hierarchies contain a large number of interesting hierarchies of soliton 
equations. 

We address here the issue of formulating the additional nonisospectral Virasoro symmetry structure for the 

cKP hierarchies. This amounts to solving the problem of compatibility of the constraints with the additional 
nonisospectral symmetries of the original KP hierarchy. First, we show that the Virasoro algebra formulated 
according to the standard approach to KP additional symmetries [6] is broken by the cKF’ constraints down 
to its sZ( 2) subalgebra (containing Galilean and scaling symmetries). Next, we show how to recover the full 
Virasoro symmetry (for the Virasoro generators &, n > - 1) by adding to the standard Virasoro generators 
“ghost” symmetry flows related to the plethora of (adjoint) eigenfunctions characteristic for the cKF’ Lax 

operator formulation. 

We also discuss a special case of cKP hierarchies - the so-called truncated KP hierarchies obtained as 
Darboux-Bticklund (DB) orbits of initial purely differential Lax operators. Application of our construction 

establishes the condition for commutativity of additional-symmetry flows with the discrete Darboux-Bticklund 
transformations. This condition sheds new light on the derivation of the string-equation constraint (string 
condition) for matrix models. Details of calculations will appear elsewhere [ 71. 

2. Background on KP hierarchy 

We use the calculus of the pseudodifferential operators to describe the KP hierarchy of nonlinear evolution 
equations. In what follows the operator D is such that [D, f] = f’ with f’ = Jf = df/ax and it satisfies the 

generalized Leibniz rule (Eq. (A.1 ) from the Appendix). 

The main object here is the pseudo-differential Lax operator Q 

r-2 

Q= D’+CUjD’+Cu;D-’ (1) 
J=o $1 

of a generalized KF’ hierarchy (here “generalized” refers to the fact that Q is an rth order operator with r 3 1, 
see also Ref. [ 81) . The associated Lax equations (with x = tl ), 

-L&Q = [Q:/‘vQlt I= 1,2,..., 

describe isospectral deformations of Q. In (2) and below, the subscripts (&) of pseudo-differential operators 

indicate purely differential/pseudo-differential parts. Commutativity of the isospectral flows a/at/ (2) is then 

assured by the Zakharov-Shabat equations. One can also represent the Lax operator in terms of the dressing 
operator W = 1 + c;” w,,D-” through Q = WD’W-‘. In this framework Eq. (2) is equivalent to the so-called 
Wilson-Sat0 equation, 

$W = -( WD’W-‘)-it! (3) 
I 

For a given Lax operator Q, which satisfies Sato’s flow equation (2)) we call the function @ (!P), whose flows 
are given by the expression6, 

a@ 
atl = Q:/'W, g = -(Q*):/'(P), 1=1,2,..., 

1 

6 For any (pseudo-)differential operator A and a function f, the symbol A(f) will indicate application (action) of A on f as opposed 

to the symbol Af meaning just operator product of A with the zero-order (multiplication) operator f. 
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an (adjoint) eigenfunction of Q. In (4) we have introduced an operation of conjugation, defined by simple 
rules D* = -D and (AB)* = B*A*. An eigenfunction, which in addition also satisfies the spectral equations 

Q$ (A, t) = A$ (A, t) is called Baker-Akhiezer (BA) function. 

3. Additional symmetries for the KP hierarchy 

The KP hierarchy has an infinite set of commuting symmetries associated with the isospectral flows described 
above (Eq. (2) ). However, the group of symmetries of the standard KP hierarchy is known to be much bigger. 
The extra symmetries are called “nonisospectral” or “additional” symmetries. A convenient approach to deal 
with symmetries of the integrable hierarchies of equations was developed by Orlov and Schulman (see Refs. 
[ 6,9,10] ) and this is the approach we will use here. Other important contributions to the subject of additional 
symmetries for the KP hierarchy were made by Fuchssteiner [ 1 l] and Chen et al. [ 121. See also Ref. [ 13 J 
for the related discussion of the AKNS model, Ref. [ 141 for the truncated KP hierarchy and Ref. [ 151 for 

treatment of the generalized matrix hierarchies. 
Let M be an operator “canonically conjugated” to Q such that 

[Q,Ml = 1, $M = [Q:/',M]. 
1 

The M-operator can be expressed in terms of dressing of the “bare” M(O) operator 

conjugated to the “bare” Lax operator Q(O) = D’. The dressing gives 

M = WM’O’W-’ = WX(,, W-’ + c +r+,Q1ir = 1 Ftr+iQy’ + M-, 
[al I)0 

M_ = WXC,)W-’ - t, - 1 F&+,5 . W-’ 

121 

(5) 

(6) 

(7) 

(8) 

where in (8) we used Eqs. (3). Note that Xt,) is a pseudo-differential operator satisfying [D’, Xc,) ] = II . 
The so-called additional (nonisospectral) symmetries [6,9] are defined as vector fields on the space of KP 

Lax operators ( 1) or, alternatively, on the dressing operator through their flows as follows, 

&,nQ =-[(M”Q’)_,Q] = [(M”Qk)+,Q] +nM”-‘Qk, c%,~W=-(M~Q~)_U! (9) 

The additional flows commute with the usual KP hierarchy flows given in (2). But they do not commute 
among themselves, instead they form the WI+~ algebra (see, e.g., Ref. [9] ). One finds that the Lie algebra 
of operators &n is isomorphic to the Lie algebra generated by -z” (a/az> k. Especially for n = 1 this becomes 
an isomorphism to the Virasoro algebra &,I N -.&_,, with [,$,&I = (?i - k)& 

4. Constrained KP hierarchy and additional symmetry 

We now turn to the main problem of this Letter, namely, compatibility of the additional Virasoro symmetry 
with the constraints defining the cKP hierarchy. We first introduce the symmetry constraints leading to the 
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cKP hierarchy. Let a,, be vector fields, whose action on the standard KP Lax operator (with r = 1) A = 
D + Cs uiD_‘-’ is induced by the (adjoint) eigenfunctions @iv qi of A through [4] 

a,d 3 [A, aiD_' Pi] 

Let us recall the following fundamental property. 

The vector fields a, commute with the isospectral flows of the Lax operator A, 

[&,,d/atlld=O, I= 1,2,..., (11) 

The constrained KP hierarchy (denoted as cK.P,,) is then obtained by identifying the “ghost” symmetry flow 
C:lr d,, with the isospectral flow a/at, of the original KP hierarchy. 

Comparing ( 10) with Eq. (2) we find that for the Lax operator belonging to the cKP,,, hierarchy we have 
X_ = CE, @iD-‘YPi. Hence we are led to the Lax operator L = A’ given by 

and subject to the Lax equation (2). Therefore, we parametrize the cKP,,, hierarchy in terms of the Lax 
operator ( 12) and consider in what follows the operator M conjugated to L from ( 12). Note that the (ad- 
joint) eigenfunctions @i, Pi of the original Lax operator A used in the above construction remain (adjoint) 
eigenfunctions for L ( 12) [ 161. 

Applying the additional-symmetry flows (9) on L ( 12) for n = 1 we get 

(&IL)- = wfLk>+,Ll_ +m-. (13) 

Using the simple identities (A.3) and (AS) from the Appendix for the Lax operator ( 12), we are able to 
rewrite ( 13) as 

(Jk,lL)_ =~(~L~~+(~i)D-‘~i-~~iD-‘(~L~)_(~i) +~~L”‘-‘(~i)o-‘(L*)‘(~i). 
Fl i=I i=l j=O 

(14) 

Here 

( 15) 
j=l 

(and similarly for the adjoint counterpart) denotes action of L on @i. Notice that Lk-j-’ (@ii), (L*)j( Pl) 
are (adjoint) eigenfunctions of L (12). Hence, whereas the original L ( 12) belongs to the class of cKP,,,, 
hierarchies, the transformed Lax operator given by &r L (cf. Eq. ( 14) ) belongs to a different class - cKP,,,,(k-r ) 
(for k 2 3), since the number of eigenfunctions compared with formula ( 12) has increased. 

For k = 0, 1,2 the flow equations (14) can still be rewritten in the desired original cKF’,,, form, 

( 16) 
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with&-&’ (k=0,1,2), where 

ao,l@i = (W+(@i), JO,l~i = -(WS_WiL 

Jl,l@i = (ML)+(@i) + a@i, dl,lpi = -(ML):(pi) + pp’iv cu+p= 1, 

a2,l@i = (ML*)+(@i) + L(@i), &,l!Pi = -(ML2)*+(Fi) + L*(Pi). 

Note an ambiguity on the right hand sides of ( 18). 

(17) 

(18) 

(19) 

Since the additional flows satisfy an algebra [ &,I, &,I ] = -(I - k)&+k_l ,I we have an isomorphism &’ N 
-Lk-.’ with the Virasoro operators and Qs. (17)-( 19) contain the s1(2) subalgebra generators L-‘, LO, Cl. 

However, for & = &J k 2 3, Eq. (16) does not hold anymore due to absence of consistent definitions for 
Jk,‘@i,Jk,‘Wi generalizing (17)-( 19) for higher k. Thus, it appears that the symmetry constraints behind the 
cKP hierarchies have broken the standard KP additional Virasoro symmetry down to its s1(2) subalgebra. 

To recover the complete Virasoro symmetry, our strategy will be to redefine the additional-symmetry gener- 
ators. We first describe our technique for k = 3 in which case Eq. (13) contains a term 

(L3)_ = ~@iD-1(L*)2(Pi) +~L(@i)D-‘L*(Fi) + ~L2(~i)D-‘y: 
i=l i=l i=l 

(20) 

Note that the middle term in (20) is not consistent with the form of Eq. (16). At this point we recall that for 

the pseudo-differential operator 

I 

XE c I&D-’ Nk (21) 
k=I 

with definitions (12) and (21) we find using identity (A.4) from the Appendix, 

[X,L]_=~~-ED-‘Nk+~~D-‘L*(NI)I +~[X(~i)D-“y,-~iD-‘X*(~i)]. 
k=l i=I 

(22) 

We now introduce the family of pseudo-differential operators of the same type as X in (21), 

m k-l 

Xj”’ E ~:~;Lk-‘-‘(~i)D-‘(L*)‘(~i), k3 1, (23) 
id j=O 

m k-l 

Xi” E rx[j- i(k- l)]Lk-‘-j(@i)D-‘(L*)j(Pi), k3 1, (24) 
i=l j=O 

m k-l 

xp G cc [j2 -j(k- 1) + $(k_2)(k- l)]Lk-‘-j(@i)D-‘(L*)j(~~)~ k> 1. (25) 
i=l j=O 

According to Eq. ( 11) the flows generated by (22) will commute with the isospectral flows (2) provided 
Mi, Ni are (adjoint) eigenfunctions, which will be the case in what follows. 

Since Xi” = ( Lk) - for the cKP hierarchy [ 171 the operators from (23) generate the standard isospectral 
flows. We now investigate the role of remaining operators from Eqs. (24), (25) for the construction of 
nonisospectral flows within the cKP hierarchy. Considering first as an example operator X2$ from Eq. (24) 

we find that 
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[X!j”,L]_ = -(L3)_ + 3~[@~D-1(L*)2(?Pi) f L2(@i)D-‘!Pi] 
i=l 

+ ~[X~"(@i)D-'Pi -@piD-‘X~‘)(3cri)]. (26) 
i=l 

Hence [-(ML3)_ +Xi”,L]_ still has the form of (16). Therefore, it may be possible to find additional 

symmetries for the cKP models by combining the original &J flows and the ghost symmetry flows (10) 

associated with operators of the type as in (24). This will work provided that the above construction yields 

the Virasoro generator I$ obeying the correct algebra with the unbroken sl(2) generators found above in 

(17)-( 19). 
We now generalize the above manipulations to an arbitrary k using definitions (23)-(25). Acting on (23)- 

(25) with &J for !J = 0,1,2 and using 

af,tLk(@i) = (ML’)+(Lk(@i)) + (k+ ie)L ‘+‘-‘(@i), 

Je,i(L*)k(!Pi) =-(MLe);((L*)‘(Pi)) + (k+ ~e)(L*)k+‘-l(Wi), 

valid for e = 0,1,2 and k 2 0, we get 

(27) 

- a&,1x, co) = [(ML~>+,X~“‘]_ +kx$_,, (28) 

a,,,x;” = [(Md)+,Xyl_ + (k-e+l,x~;\_,, (29) 

- &,I x, (2) = [(MLq+,xpl_ + [k-2(!?-- 1)1X& - i[(C- 1)3 - ([- l)]X& (30) 

Here we recognize the structure of the W I+~ algebra under substitution f? -+ e - 1 (see, e.g., Ref. [ 181). Let 
us now restrict our attention to the part of the algebra involving the Xii), operator from (24). We note that 
(22) and identity (AS) from the Appendix enable us to obtain 

+ fJ_SiO-‘(X:“,)*(!Pi) +X:‘),(@i)D-‘?P,i]e 
i=l 

Rutting together ( 14) and (3 1) yields our main result: 

(31) 

The correct additional-symmetry flows for the cKP hierarchies ( 12), spanning the Virasoro algebra, are given 

by 

a;L Z [-(A4JP)_ +x”’ L] kl’ ’ (32) 

i.e., with the isomorphism fZk-1 N -(ML’) _ +X:1_‘, , where X:!!, are defined in (24). Accordingly, on dressing 
operators and BA functions the flows (32) read 

a;w= [-(MP)- +x”’ ]W kl ’ a;$wt,A) = HMLkL +x:!,l(qw)). (33) 

First, observe that the flows (32) preserve the &I’,,, form ( 12). Indeed, ($L) _ can be cast in the form 
of ( 16) with 
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ak*@j = (MLk)+(@i) + iL’-‘(Gi) +Xi1)1 (@i), 

dk*Pi = -(MLk)~(?Pj) + i(L’)‘-‘(Pi) - (Xiy,)*(?Pi). (34) 

Taking into account that X:1), = 0 for i = 0, 1,2 we see that Eqs. (34) reproduce (17)-( 19) (with ambiguity 

on the right hand side of ( 18) removed by fixing cy = p = l/2). Hence 3; = &i for C = 0, 1,2. 

Secondly, we note that the modified additional symmetry flows defined by (32) commute with the isospectral 

flows (2) according to (lo), (11). 
The remaining question is whether they form a closed algebra. Indeed, using identity (29) we arrive at the 

fundamental commutation relations for e = 0, 1,2 and any k 2 0, 

[d,*,a;]L = (k - t’)iI;+,_,L. (35) 

This discussion shows that [ Ci, &] = (i - k)Li+k for i = -l,O, 1 (sZ(2) generators) and arbitrary k, where 

Lk-l w -6’; . Since according to (32) the generator & is associated with Xi” - ( ML3) _, all higher Virasoro 

operators can be obtained recursively from 

L 
n+l 

- -1[Ln,LII, 
- (n - 1) 

n > 2. (36) 

Then Eq. (35) implies that Ln with n 2 3 may differ from the generators given by the flows a:+, N 
-(ML”+* ) _ 3-X:‘) defined in (32) at most by flows commuting with the sl( 2) additional symmetry generators, 
i.e., by ordinary isospectral flows. Therefore, we can now easily show by induction that Lk, k 2 -1, obtained 
in the above way form a closed Virasoro algebra up to irrelevant terms containing ordinary isospectral flows. 

5. Darboux-BHcklund transformations of cKP hierarchies. Truncated KP hierarchies 

Let @ be an eigenfunction of L defining a Darboux-Backlund transformation, i.e., 

-&CD = L:/‘(@), L = (@DC’)L(@D_‘cr’), i? = (@D@-‘) WD-’ 
1 

Then the DB-transformed M operator (cf. (7) ) acquires the form 

(37) 

fi = (@D@-‘)M(@D-‘@-‘) = c Fr,+lLy’ + rl;i_, (38) 
l>O 

ii- = iE&ti-’ - t, - c y+,;w. i-v-1, 
I)1 

1 

where Xc,., = DXc,) D-’ with Xc,) as in (6). Clearly Xcr), like Xc,), is also admissible as canonically conjugated 
to D’. 

In particular, for L belonging to a cKF’ hierarchy ( 12) we consider a special class of DB transformations 
(37) which preserve the constrained cKP form of L, 
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6i = Ta(@i), ‘Fi = TL’*Pi = -@,‘3T’(ly@a), i # a, (42) 

where the DB-generating @ E Gp, coincides with one of the eigenfunctions appearing in formula (12) of the 

initial L. 
Let us consider the generic class of DB orbits on cm,.,,,, consisting of kt transformations generated by @I, 

followed by k2 transformations in @2 direction and so on, until k, transformations in @, direction. Repeated 

use of a composition formula for Wronskians (see Eqs. (A.lO)-( A.12) from the Appendix) leads us to the 
following explicit expressions for the successive eigenfunctions and the r-function obtained after Cr=, k, steps 

of successive DB transformations (see Ref. [ 191 and also Ref. [ 201) , 

I kb-1 
&kl...., k.,O . 1 = 

a nn 
$krl....,kb-1-j,Ov..)((L(O))k,(@O))) 

b a 

b=a j=O 

= W[,p,, . . ,,p’), . . . ,*jp’, . . . ,p’)&jk*)l 

W[x{O), . . . ,/y;kl-‘), . . . &O’, . . . ,/yika-19 ’ 
T(ki,...,k,n) 1 k,-1 

T(O) = l-HI 
@p’k ,..... k,,-l,k.-1-j.0.o.) = w[~;O’, . . . , x;~‘-“, . . . ,x2’, . 

a . . ,*;k”‘-“l. 

a=m j=O 

(43) 

(44) 

where the upper indices in parentheses indicate the order of the corresponding DB step, the zero index referring 
to the “initial” cKP Lax operator, and where we have employed the short-hand notations: 

T(il.....L) 
a 

E ~(‘l,...,i-)D(~~,....i.))-l, 
a /yp s (L’O’y(@ilp’)) u= l,...,m. (45) 

As seen from (40)-(42) and (43), the DB orbit LCk’ = (LCk’)+ +cc, @jk)D-‘Pi(k) of cKP,,,, starting from 

a purely differential initial L to) = (L(O))+, defines a class of tnrncuted cKPr,,, 

eigenfunctions Yi S Fjk’ 
hierarchies where the m adjoint 

are not independent of the m eigenfunctions @i E @ik’ since both are parametrized 

in terms of m initial eigenfunctions @IO’ only. 
As a simple example of truncated cKP hierarchies, consider formulas (43)) (44) for the DB orbit of the 

cKPt+, hierarchy (the so-called “multi-boson” reduction of the general KP hierarchy) starting from a “free” 
initial L(O) = D. In this case we have to substitute in (43), (44)) 

with arbitrary “densities” c$:” (A) (and with appropriate contour r such that the A-integrals exist). A special 
feature of truncated cKPt,,, is that their dressing operators are truncated (having only a finite number of terms 

in the pseudo-differential expansion, cf. Ref. [ 141)) 

1 k,-1 Nrn 
w(kl,...,k.,) = 

nrI 

T(k,-I,..., k.-l-j.0 ,... ,D-h’m = 
cl c 

W<kl....3km)D-j 
J , N,,, c &,, (47) 

a=m j=O j=O a=1 

where notations (45) were used. 

The particular case m = 1 of (40)-(44) yields 

L’k”) = (&)D@ (k)-l)L(k)(~(k)D-l~(k)-‘) = D +gj(k+l)D-lp(k+l), 

g,ck+‘) = qj(k) (ln&k))r~ + (&k,)+(k) ,p(k+l) = (@k))-1 

(48) 

(49) 

(50) a(n) _ wrt+l[~~ a+, . . . , an41 
wnr4,adb.. . ,P-$5] ’ 

P = w,[&a+, . . . ,cT’($], 
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where 

(51) 

The hierarchies given by (48) are generalizations of the Burgers-Hopf hierarchy defined by L(r) = D + 
&In @)“D-‘4-*. 

ii. Additional symmetries versus DB transformations for cKP hierarchies. String condition 

With the help of identities (A.6)-(A.9) from the Appendix we find the following explicit form of the DB 
transformation of the operators Xl!, (24)) 

T $1) T-1 = p 
a k-l a k-l - (~(‘))k=’ + [T,(XiI), + ~kLk-‘)(@~)]D-‘@;‘, 

k-2 

(52) 

(z(a))!-’ E CZk-‘-2(~~)D-‘(Z*)j(~~). 

j=O 

(53) 

Here z, T, are as in (40) and the DB-transformed Xi!, have the same form as Xi:, in (24) with all (adjoint) 
eigenfunctions substituted with their DB-transformed counterparts as in (40)-(42). Also notice that in the 
particular case of cKp,,r hierarchies (i(@)?r (53) coincides with the (pseudo-differential part of the power 
of the) full cJCP,r Lax operator (cf. Eq. ( 12) for m = 1 and (A.5)). 

Taking into account (40)-(42) and (52), (53) we conclude that: 

The additional-symmetry flows (32) for cKF’,,r hierarchies (Eq. ( 12) with m = 1) commute with the 
Darboux-B&klund transformations (40) preserving the form of cKPr,r, up to shifting of (32) by ordinary 

isospectral flows. Explicitly we have 

a*~=-[(~Z;k>_-$f_) Q+* 
k k 1' &k-l' 

(54) 

Bq. (54) shows that the additional-symmetry flows (32) are well-defined for all cKF’,,t Lax operators be- 
longing to a given DB orbit of successive DB transformations. Notice that it is precisely the class of (truncated) 

cKp,,r hierarchies which is relevant for the description of discrete (multi-)matrix models [ 21,16,19]. 
Motivated by applications to (multi-)matrix models (see Ref. [ 7]), one can require invariance of cKF’ 

hierarchies under some of the additional-symmetry flows, e.g., under the lowest one 3; G &-,J known as 
“string-equation” constraint (string condition) in the context of the (multi-)matrix models, 

$L=O --+ [M,, Ll = -I a;@=0 + M+@=O. (55) 

Eqs. (55), using the second Bq. (5)) (7) and the first Bq. (34) for k = 0, lead to the following constraints on 
L ( 12) and its DB-generating eigenfunction @, respectively, 

I+?- c- tri1 
r 

$L + [t1, LlSr.1 = -1, 
121 1 

( l+r a c- tr+1,,l + tr 
> 

@ = 0. 
121 r 

(57) 
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Recall now the formula (44) for the r-function of the cKP,,~ hierarchy ( 12). Noticing that the eigenfunctions 

Qick) of the DB-transformed Lax operators Lck) satisfy the same constraint Eq. (57) irrespective of the DB-step 

k, we arrive at the following result (“string-equation” constraint on the r-functions) : 

The Wronskian r-functions (44) of &I’,,,, hierarchies (12), invariant under the lowest additional symmetry 

flow (55)) satisfy the constraint equation 

( 1-l-r ~3 c- 
.(n) 

fr+l - + nfr 0. 
121 r 

at 
1 > 7(o)= (58) 

As the simplest illustration, consider the discrete one-matrix model corresponding to the generalized Burgers- 
Hopf hierarchy, i.e., to the chain of the Lax operators connected via DB transformations as described in Eqs. 

(48), (49)) but with the additional restriction on C#I - @ (‘) (51) (coming from the orthogonal polynomial 

formalism), 

4=J dhexp c t,A (m r), i.e., 4 (O)(A) = 1. 
r=l 

(59) 

The initial “free” eigenfunction (59) obeys the constraint Eq. (57) (for r = 1) and, therefore, Eq. (58) (with 
r = 1) for the r(“) as in (50) yields precisely the “string-equation” in the one-matrix model, 

L’“:w,[c$,ac#&. . . ,a”-‘+] = 0, LF/ Z e ktk 
a 

- + nt1 
k=2 atk-1 

Furthermore, as one can check directly [ 71, the Wronskian r-function (second Eq. (50)) with 4 restricted 
as in (59) automatically satisfies all higher Virasoro constraints. Thus, we conclude that for the particular 
class of cKP hierarchies - the generalized Burgers-Hopf hierarchies (48)-( 5 1 ), invariance under the lowest 
additional-symmetry flow automatically triggers invariance under all higher additional-symmetry flows as well. 

Appendix A. Technical identities 

We list here for convenience a number of useful technical identities, which have been used extensively 

throughout the text. 
We work with calculus of pseudo-differential operators based on the generalized Leibniz rule, 

D”f = 2 (;) (ajf)D”-‘. 
j=O 

(A.1) 

For an arbitrary pseudo-differential operator A we have the following identity, 

(,yD,y-‘A,~D-‘x-~)+ = ,yDx-‘A,xD-‘x-’ - ,yax(,y-‘A+(x))D-‘x-l, (A.2) 

where A+ is the differential part of A = A+ + A_ = cz AiD’ + c:L AiD’. For a purely differential operator 
K and arbitrary functions f,g we have an identity 

[K, fD-‘g]_ = K(f)D-‘g- fD-‘K*(g). (A.3) 
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Another useful technical identity involves a product of two pseudo-differential operators of the form Xi = 

fiD-‘gi, i = 1,2, 

X1X2 = X,(.f2)D32 +f,D-‘X;(g,), 

where XI ( $2) = fla;’ (gl f2), etc. From the above identity follows the relation [ 171 

(A.4) 

m k-l 
(Lk)_ =~)Lk-‘-‘(~i)D-‘(L*)‘(Yi) 

i=l j=O 

for the cKF’ Lax operator ( 12). 

(A.5) 

Let us also list some useful identities involving Darboux-Bticklund-like transformation of pseudo-differential 
operators of the Xi-form above, 

T,(@,D-‘N)T,-’ = (@2,N)D-‘@;‘, (A.6) 

T,(MD-‘PJT,-’ = @D-‘(~*(&)) + {T,(Ma,-l(~~~~))}D-l~~l, (A-7) 

T,(MD-‘N)T,-’ = MD-%+ (T,(Ma,-‘(N~,))}D-‘~,I, (‘4.8) 

(~*Ym = -~,-la,-'(~,(L*)s-'(w,)), (A.9) 

where Qa is one of the eigenfunctions of a cKE’ Lax operator L ( 12) and 

T, e @,D@,-‘, ly, = @,‘, 

MET, = @,a,(q'M), k = T,-‘*(N) = -@p,‘a,-‘(@aN). 

Finally, let us recall the following important composition formula for Wronskians [ 223, 

wk(f> 
T,Tk_, . ..T.(f) = - 

wk 
9 (A.lO) 

wk = wk[+l,..., +k] =det()aj-‘Gj(l, Wk-l(f) =Wk[$h,...,$k-l,fl. 

(A.1 I) 

(A.12) 
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